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Abstract
Apart from the rectangular barrier, other barriers having a single maximum
generally display reflectivity, R(E), as a smoothly decreasing function of
energy. We conjecture that symmetric potential barriers with a single maximum
entail zeros or sharp minima in R(E) provided they have either their coefficient
of kurtosis lying in the range (1.8, 3.0), or their top curvature as zero, or both.

PACS number: 03.65.Nk

1. Introduction

Generally, a rectangular potential barrier is thought to be an exceptional model of quantal
reflection (transmission) from a one-dimensional potential barrier entailing multiple zeros in
the reflection coefficient, R(E), at energies above the barrier. On the other hand, the well-
known analytically solvable potential barriers do not show reflectivity zeros at all whatever
the values of E,V0 (height) and a (slope) may be. By a single top potential barrier we mean
the positive definite potentials (V (x) � 0) having a single maximum. The exactly and the
analytically solvable (quantal and WKB) instances are the Eckart barrier [1], the parabolic
barrier [1], the exponential barrier [2], the Morse barrier [3], the asymmetric parabolic barrier
[4] and one more [5] which interpolates between the Morse and the Eckart barriers. The
Ginocchio barrier [6] is the most recent addition to this class. Other useful instances of
potential barriers which are not analytically solvable are the Lorentzian and the Gaussian
barriers. We shall refer to these potential barriers as type-I.

The type-I potential barriers have one common interesting feature that at energies above
the barrier they strictly entail only two complex conjugate turning points (roots of E = V (x)).
The conventional WKB formula for the reflection coefficient is essentially limited only to two
complex conjugate turning points and this gives rise to the smooth (non-oscillatory) variation
of R(E). See figure 1 and inset of figure 2. These barriers have non-zero top curvature (i.e.,
V ′′(0) �= 0). The coefficient of kurtosis (β2, see below equation (1)) for these profiles is more
than 3.
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Figure 1. R(E) for the truncated and untruncated Lorentzian (type-I) barriers. When the cut-off
length d approaches 100 the oscillations disappear. The WKB formula (3a) overestimates (though
there is only one pair of complex conjugate turning points at over-the-barrier energies). The Born
approximation underestimates and gives smooth reflectivity.

Figure 2. R(E) for a type-II barrier: V (x) = V0 e−x4
and (in the inset) for a type-I barrier:

V (x) = V0 e−x2
potential barriers. Solid lines are exact quantal (2) results, dotted lines are due to

the Born approximation and the long dashed lines represent the WKB (using two turning points)
results. Note that the type-II barriers yield oscillatory reflectivity wherein the WKB (using two
turning points) methods fail and the Born approximation works only qualitatively.

In contrast to this, we propose to study the potential barriers which yield non-smooth
oscillatory reflectivity entailing multiple zeros/minima at energies above the barrier (the
super-barrier energies).

The query raised here also receives significance from the following phenomenon. The
suppression of localization wherein the appearance of extended states [7] requires the vanishing
of reflectivity from a single scatterer at a discrete set of electron energies. In nucleus–nucleus
fusion at energy near the Coulomb barrier, the fusion rates σ(E) for the systems like 12C + 12C

and 16O + 16O display oscillations as a function of energy. And in the barrier penetration
model fusion (see [4]) it is the penetrability factor (transmission coefficient), T (E), which
is required to be oscillatory. In anti-de Sitter cosmologies the universe is required to pass
over a potential barrier reflectionlessly [8]. More recently, the PT-symmetric origin of
reflectionlessness of potential barriers has been revealed [9]. According to this work, for
the potential barriers of the type V (x) = −x2K+2, K = 1, 2, 3, . . . , reflectionlessness is
the result of the imposition of the PT-symmetric boundary condition on the wavefunction.
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By PT-symmetry, we mean the invariance under the joint action of parity (x → −x) and
time-reversal (i → −i) transformations. These instances bring into contention the potential
barriers other than type-I as discussed above.

2. Existing conditions on potentials for reflectivity with minima/zeros

Usually, in textbooks the reflectivity zeros of the rectangular barrier are passed off as artificial
or exceptional. Else, one tends to attribute the reflectivity zeros of the rectangular barrier
to the strict finite support of the potential. The above-mentioned type-I barriers if truncated
on both the sides of the barrier do give rise to oscillatory behaviour of R(E) or T (E) [10].
But more often the reflectivity zeros of the rectangular barrier are intuitively conceived to be
arising from the sharp edges (points of non-differentiability) of the barrier in analogy with
Fabry–Perot interferometry. The question arising here is whether there can be a class of smooth
(single piece and single maximum) potential barrier which can give rise to a discrete energy
spectrum of reflectivity zeros or minima. It needs to be emphasized that when a potential is
truncated (e.g. at x = ±d) on both the sides it becomes a three-piece potential and it is a
piecewise continuous profile. However, the truncation of a potential barrier provides us with a
condition on the potential for observing oscillatory reflectivity. We shall refer to it as the first
condition (C1).

In a very interesting paper on semiclassically weak reflections above analytic and non-
analytic potential barriers, Berry [11] has attributed the oscillatory reflectivity to the non-
analyticity of the potential and the rectangular barrier has been acknowledged as a kind of
non-generic. For a specially tailored potential barrier VBerry(x) = V0(1 − e−1/|x|), R(E) has
been found to be oscillatory [11]. This work provides us with another condition (C2) for the
super-barrier reflectionlessness.

Later potential profiles like VCh(x) = V0/(1 + x4) [12] have been considered as a new
variety in semi-classical WKB analysis. The new feature is that this potential unlike the above-
mentioned type-I potentials entails two pairs of complex conjugate turning points at super-
barrier energies (E > V0). Using the interesting asymptotic properties of the Schrödinger
equation arising from the Eckart potential (−sech2 x) a new WKB formula for reflectivity has
been proposed [12]. It is found that R(E) for VCh(x) entails a discrete spectrum of reflectivity
zeros. Here we encounter the third condition (C3).

3. The coefficient of kurtosis and top curvature of profiles: two new proposals

The rise and fall of the rectangular barrier is sharp (most rapid) and that is the limit. We
utilize this as a crucial feature of the barriers for displaying reflectionlessness at discrete
energies. Hence, we look out for potential barriers which rise and fall more and more rapidly.
Consequently, the potential would get flattened around its top. Interestingly, in statistical data
analysis [13] we have one such measure that enables the determination of the flatness of a
(distribution) function, V (x). It is called the coefficient of kurtosis, denoted as β2 and defined
as

β2 = µ0µ4

µ2
2

, µn = 〈(x − x̄)n〉 =
∫ ∞

−∞
(x − x̄)nV (x) dx, x̄ =

∫ ∞

−∞
xV (x) dx. (1)

Here x̄ is the mean value of x which for a symmetric profile coincides with, x = 0, the position
of the top of the barrier. If the profile is normalized, µ0 is unity. Note that β2 is dimensionless,
scaling free (independent of a) and also independent of the absolute value of the function.
Usually, in statistical analysis β2 is compared against a value of 3 which corresponds to a
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normal (the Gaussian) distribution function, and various profiles are categorized as platykurtic
(when β2 < 3) or mesokurtic (when β2 > 3).

The values of β2 for the Lorentzian, VL(x) = V0/(1 + x2), the exponential, Ve(x) =
V0 e−|x| [2], the Eckart, VE(x) = V0 sech2x [1] and the Gaussian, VG(x) = V0 e−x2

, barriers are
indeterminate, 6, 4.2, 3, respectively. A more general potential of type-I is V1(ν, x) = V0

(1+x2)ν
;

it has β2(V1, ν) = 3 2ν−3
2ν−5 > 3, for ν > 5/2.

We find that β2 for VBerry(x) is indeterminate. It may be good to note that VBerry(x) and
its first derivative are continuous for x ∈ [−∞,∞]. However, we find that this potential
is flat at the top from another point of view wherein we have V ′′(0) = 0. We know that if
V ′′(0) = 0 (where x = 0 is strictly the position of the top of the barrier, i.e., V ′(x = 0) = 0),
the function V (x) will be flatter around the barrier top (infinite radius of curvature) and hence
rectangular type. This motivates us to analyse the top curvature of the barriers which have
oscillatory reflectivity. We claim that these potential barriers will not possess reflectivity
zeros. The reflectivity, R(E), for Ve(x) and VG(x) and VC(x) = V0 e−|x|3 has been found to
be non-oscillatory [11]. Moreover, it can be readily checked that all these well-known type-I
potentials have V ′′(0) �= 0. Also note that V ′′

1 (ν, 0) = −2νV0.
Here we propose two new conditions on a barrier to possess such a reflectivity. We find

that when either the coefficient of kurtosis (β2, see (1)) of a barrier lies in the interval (1.8, 3.0)
(C4), or its top curvature is zero (C5), or both, the reflectivity entails multiple zeros/minima.
Barriers satisfying both or either of these conditions shall be referred here as type-II barriers.

We remark that VBerry(x) and VCh(x) do possess oscillatory reflectivity, however, due to
mutually exclusive characteristics of the potential. The former has a non-analyticity built in
but does not have more than one pair of complex conjugate turning points at super-barrier
energies. On the other hand, VCh(x) has two pairs of such turning points yet it does not possess
any non-analyticity. Also these are (non-truncated) smooth single-piece potentials. Thus the
conditions C1, C2, C3 can be adjudged to be at most sufficient and not necessary.

The two new criteria/conditions presented here may or may not be mutually exclusive in
telling whether there will be reflectivity zeros. Our conclusions shall be based on the exact
extraction of the reflection coefficient by numerical integration of the Schrödinger equation as
outlined below.

4. The method for the calculation of R(E)

First, we outline the method we adopt to calculate R(E) when potential barriers converge
asymptotically on both the sides of the barrier top. Let the barriers be symmetric and of
arbitrary shape. We treat them as though they are truncated at a large distance, d. The
truncated potential is then defined as V (|x| > d) = 0, V (|x| < d) = V0f (x/a). The
reflection coefficient R(E) for such potentials can be obtained as

R(E) = [k2a2u(d/a)v(d/a) + u′(d/a)v′(d/a)]2

[k2a2u(d/a)v(d/a) + u′(d/a)v′(d/a)]2 + k2a2
, (2)

where k = √
2mE/h̄. The orthogonal functions u(x), v(x) are the even and odd linearly

independent solutions of the Schrödinger equation such that u(0) = 1, u′(0) = 0 and
v(0) = 0, v′(0) = 1. The numerical integration of Schrödinger equation is to be carried
out with these initial values from x = 0 to x = d and the end values are to be retained for
equation (2). The end values should yield the value of the Wronskian (=uv′ − u′v) as unity
for every energy; this serves as a test of goodness for the integration method. Note that a finite
value of d indicates the finite support which otherwise is infinity, if the potential converges
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asymptotically on both the sides. We have used the Runge–Kutta method for numerical
integration.

5. Type-II potential barriers

We have employed many analytic potential barrier profiles to demonstrate the claimed criterion
for the occurrence of reflectivity minima. Some of these models are V2(n, x) = V0

1+(x/a)2n , with

β2(V2, n > 2) = sin2(3πη)

sin(πη) sin(5πη)
; and V3(n, x) = V0 exp(−(x/a)2n), with β2(V3, n) = �(η)�(5η)

�2(3η)
,

where η = 1
2n

. These two coefficients of kurtosis yield 9/5(=1.8) in the limit when n → ∞,
so we a priori infer that these two potentials are rectangular like and hence these will support
reflectivity zeros as n increases (see figure 2). Note that β2(V3, n = 1) = 3, which is the
well-known value of the coefficient of kurtosis for the Gaussian function and the reflectivity
for the Gaussian barrier (type-I) as displayed in figure 2 (solid line) is non-oscillatory. We
must remember to check that for type-II potentials, e.g., V2 (n > 1, x) and V3 (n > 1, x), the
second derivative at x = 0 vanishes as we have V ′′(0) = −2V0δn,1.

6. Calculations and discussions

Using equation (2) we calculate the reflectivity, R(E), for the truncated Lorentzian potential:
V (|x| � d) = V0

1+(x/a)2 , V (|x| > d) = 0. We assume that 2m = 1 = h̄2, V0 = 1 and
a = 1. These results are presented in figure 1. As the truncation distance, d, increases the
oscillations in R(E) reduce and disappear when d = 100 (see the solid line in figure 1). For
the Lorentzian (VL(x), i.e., V1(1, x)), the reflectivity resulting from the simple WKB and the
Born approximations works to

RWKB(E) = exp(−4
√

V0[E(β) − α2K(β)]/β), α =
√

V0/E, β =
√

1 − α2.(3a)

RBorn(E) = π2V 2
0

4E
exp(−4

√
E∆). (3b)

Here E and K are elliptic integrals. These reflectivities are found to be non-oscillatory wherein
the WKB approximation (long dashed line) overestimates and the the Born approximation
(open circles) underestimates. The exact quantal R(E) from equation (2) for almost
untruncated case (d = 100) is given by the solid line.

The multi-minima reflectivity found for V2(2, x) = V0
1+x4 is not shown here. Notably,

the coefficient of kurtosis of this profile is indeterminate; however, its top curvature is zero.
In figure 2, R(E) for the typical type-II barrier, V3(2, x), is given. The WKB (using two
turning points) result fails to display the oscillatory behaviour whereas the Born approximated
(short dashed line) result produces oscillations which agree with exact result (solid line) only
qualitatively. The value of β2 for this barrier is 2.18 and we also have V ′′(0) = 0. This is
therefore an instance where both the criteria are met and the minima in the reflectivity are
observed. We also find that a special branch of the Ginocchio [6] barrier constitutes an exactly
solvable model of such a variety. In the inset of figure 2, R(E) for another type-I barrier (the
Gaussian) is given. The exact quantal result from equation (2) and the WKB approximated
(long dashed line) results almost coincide here. This is generally true for type-I barriers with
the Lorentzian barrier as an exceptional case. The Born approximation for the Gaussian,
V3(1, x) or VG(x), case gives

RBorn(E) = V 2
0 π

4E
exp(−2E). (4)
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Figure 3. R(E) for another type-II barrier: Vε(x) = V0 e−(εx2+x4) when ε = 2.0. For this case
β2 = 2.60, however, the barrier has got a finite curvature. The solid line is for V0 = 1.0 and the
dotted line for V0 = 10.0. Note that the oscillatory reflectivity is observed when the barrier height
is larger V0 = 10.0. Else the reflectivity with multiple minima will be observed for E 	 V0 when
V0 = 1.0.

Figure 4. Exactly computed reflectivity, R(E), for exponential potentials, Vs(x) = V0 e−x4−sx .
The dotted line displays the reflectivity for the Gaussian barrier and the solid line is for Vs=0(x). The
short-dashed, medium-dashed and long-dashed lines display the reflectivity when the asymmetry
parameter s is 0.1, 0.5 and 1.0, respectively. Note that for the case of s = 0.1 feeble oscillations are
still sustained. Here V0 = 10 in arbitrary units. Note the flatness of the potential Vs=0(x) (thick
line) at the barrier top in comparison to the Gaussian barrier (thin line) in the inset. The value of
the kurtosis parameter β2 for the flat barrier is 2.18 (s = 0) and for the Gaussian it is 3. The values
of the kurtosis parameter, β2, for the case of s = 0.1, 0.5, 1.0 are 2.46, 2.76, 3.16, respectively. In
the cases of s = 0.5, 1.0 an increased value of V0 exhibits slightly more pronounced oscillations.

This is shown by a short dashed line underestimating the reflectivity. For the Gaussian barrier,
we have β2 = 3 and V ′′(0) = −2V0.

In figure 3, we give the interesting example of VR(x) = V0 e−(εx2+x4), which has
β2(ε = 1) = 2.60 and β2(ε = 2) = 2.43 and its reflectivity entails multiple minima when
V0 is large. The top curvature of the barrier being non-zero, this is an interesting example
wherein the two criteria of top curvature and kurtosis are also mutually exclusive.

Presently, we have discussed only asymptotically convergent potentials; the
reflectionlessness of asymptotically divergent barriers, VK(x) = x2K+2,K = 1, 2, 3, . . . ,

has been discussed in [9]. It is again worth remarking that VK(x) potentials have their β2

indeterminate but they have the top curvature as zero.
We find that the symmetry of the barriers plays the most crucial role; a slight deviation

from symmetry causes the weakening of the oscillations in the reflectivity. In figure 4, we
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present evidence for this as we compute the reflectivity for the potential V (x) = V0 e−x4−sx

when s = 0.0, 0.1, 0.5, 1.0 to find that the oscillations in R(E) die out as we deviate from the
symmetry of Vs(x). It may be noted that here we have to perform the numerical integration
on both the sides of the barrier and the end values of u(x) and v(x) at x = ±d will be used
to determine R(E); equation (2) has not been used here. However, once again the kurtosis of
these barriers can be calculated using (1), where x̄ will depend on the asymmetry parameter s.
We find that β2 increases as s increases; it is 2.18, 2.46, 2.76, 3.16 for s = 0.0, 0.1, 0.5, 1.0,
respectively. Symmetry of the potential barriers is also behind the PT-symmetric origin of
reflectionlessness [9].

7. Summary and conclusions

Having studied the question as to what type of potential barriers would entail reflectivity
zeros/minima, we summarize our findings pointwise as follows.

• The symmetry of the single top barriers turns out to be most crucial.
• The reflectivity, R(E), of a one-dimensional potential barrier having β2 in the range

(1.8,∼ 3.0) is an oscillatory function of energy. When the value of β2 is closer to 1.8
the barrier is rectangular type and the reflectivity minima are more pronounced. The
barriers having β2 closer to (or greater than) 3.0 are unlike rectangular barriers and the
reflectivity is a smooth decreasing function of energy. The reflectivity for VBerry and VCh

is known to entail zeros; however, β2 being indeterminate these two are the exceptions to
this criterion/condition which we have referred to as C4.

• We find that the zero curvature at the top (V ′′(0) = 0) is the most simple
criterion/condition (C5) on the potential barriers for observing the oscillatory behaviour
of R(E). This criterion also includes the special potentials, VBerry(x) and VCh(x).

• With an exception to VBerry(x), we find that oscillatory reflectivity mostly implies or
is implied by more than one pair of over-barrier complex conjugate classical turning
points. Consequently, the conventional WKB formula based on the single pair of complex
conjugate turning points fails as it essentially gives rise to smoothly decreasing reflectivity
as a function of energy. We feel that the semi-classical derivation of reflectivity taking
into account many (not just two, as in [12]) pairs of complex conjugate points is highly
desirable.

• Interestingly, when there are reflectivity zeros or multiple minima in reflectivity the Born
approximation which bypasses the use of classical turning points of the potentials works
well qualitatively.

• Some potential barriers display oscillatory reflectivity only when the barrier height (V0)

is larger or when E 	 V0 (see figure 3).

Both the criteria of kurtosis (C4) and top curvature (C5) favour flatter barriers which
enable a potential to be more and more localized such that a bigger fraction of the area
under the barrier remains within two points say x = −a and x = a. This is the essence
of the rectangular barrier which is well known for displaying the destructive interference of
multiply reflected waves resulting in reflectivity zeros at discrete energies. The most familiar
rectangular barrier is not an exception. It, in fact, is ironically both a paradigm (the first and
the simplest) and an ultimate (the best) model of the barriers that can display reflectionlessness
at super-barrier energies.

We end by concluding that the hitherto known five conditions/criteria on a potential barrier
to have multiple minima/zeros in the reflectivity could at most be providing the sufficiency
conditions. However, the intriguing question of the necessary condition(s) in this regard still
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remains open. We believe that the symmetry of the single top barriers could turn out to be one
of the necessary conditions when a more rigorous treatment is available.
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